
Managing Data of Sensor-Equipped Transportation Networks using
Graph Databases
Erik Bollen1,2, Rik Hendrix2, and Bart Kuijpers1

1Databases and Theoretical Computer Science Group, Data Science Institute (DSI), Hasselt University and transnational
University Limburg, Agoralaan building D Diepenbeek 3590, Belgium
2Data Science Hub, VITO, Boeretang 200 Mol 2400, Belgium

Correspondence: Erik Bollen (erik.bollen@uhasselt.be)

Abstract. In this paper, we are concerned with data pertinent to transportation networks, which model situations in which

objects move along a graph-like structure. We assume that these networks are equipped with sensors that monitor the network

and the objects moving along it. These sensors produce time-series data resulting in sensor networks. Examples are river-,

road- and electricity networks.

Geographical information systems are used to gather, store and analyse data, and we focus on these tasks in the context5

of data emerging from transportation networks equipped with sensors. While tailored solutions exist for many contexts, they

are limited for sensor-equipped networks at this moment. We view time-series data as temporal properties of the network

and approach the problem from the viewpoint of property graphs. In this paper, we adapt and extend the theory of the existing

property graph databases to model spatial networks, where nodes and edges can contain temporal properties that are time-series

data originating from the sensors. We propose a language for querying these property graphs with time series, in which time-10

series and measurement patterns may be combined with graph patterns to describe, retrieve and analyse real-life situations. We

demonstrate the model and language in practice by implementing both in Neo4j and explore questions hydrology researchers

pose in the context of the Internet of Water, including salinity analysis in the Yser river basin.

1 Introduction

Transportation networks are a common research subject. These networks range from river networks that transport water and15

road networks transporting vehicles to heat or electricity networks that transport energy. A Transportation network is charac-

terised by having a stable topology, that is, the connectivity between nodes does not change often, and objects or substances

move through the topology. The objects or substances are measured or tracked by some sort of sensors, and these sensors create

time-series data. Using graphs to model transportation networks is a common practice based on the connection information

often rising from vector-based GIS data. Because these sensors themselves do not move, the time series can be attributed to20

the nodes and edges representing the vector elements. In the networks, there are also static data, which can be represented

as common properties in the graph, such as the IDs of the vector elements. As a result, researchers have to process property

graphs with time series in the nodes and edges. This is different from the field of temporal graphs because nodes and edges are

always considered present here. Only the properties can change through time, in which case, a property is considered to have

1

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

different values at different points in time. In contrast, most work about temporal graphs assumes that nodes and edges can be25

removed or added, resulting in graphs where node and edge are linked with validity time intervals.

With the rise of the Internet of Things, the number of sensors in transportation networks has grown considerably, and the

rate at which these sensors produce data is increasing too McCabe et al. (2017). Therefore, the time series can have a high

resolution of data points. Nodes and edges are well-supported in graph databases, and query languages exist to process them.

However, managing time series in graph databases is not trivial. Additional data structures are required to store the time series,30

and the existing query languages do not support time series to express constraints. Similarly, time-series databases are well

established with their query languages to deal with the timestamps and values. However, adding the graph structure of the

network is not supported. A system that fully integrates and supports both graph structures and time series data is missing.

In this work, we use an existing model for property graphs to create a property graph model that includes time series in nodes

and edges. We leverage pattern matching, commonly used in the current graph language, to create a query language and logic35

that can answer queries over the proposed graph model. One crucial part is that, in the query language the temporal properties,

with their timestamp-value pairs, can interact with the nodes, edges, and their static properties. The natural order present in the

time series is built into the query language to simplify writing constraints in the queries. This provides tools for studying and

transforming the data for advanced analysis. The proposed logic is well suited to objectively describe and study problems or

shortcomings in the model or query language. Next to the theory in this work, the usage of the model and and implementation40

is demonstrated on a practical use-case within the Internet of Water project where electrical conductivity data is analysed on

the Flemish Yser river.

A very preliminary version of the theory, presented in this paper, was published in Bollen Bollen (2022), without theoretical

framework and implementation. We want to use the present work to develop the theoretical foundation and to show how it can

be implemented. In addition, we discuss experiments and additional examples here.45

In Section 2, we discuss the related work and in Section 3 the theoretical model for property graphs with time series is

given. Section 4 defines the logic for the proposed query language and shows how this language can be realised using the

Graph Pattern Matching Language (GPML). The section ends with some application examples. In Section 5, we describe our

implementation of the graph model and query language using Neo4j and Cypher together with an experiment based on the

Internet of Water project. Section 6 and Section 7 discuss the proposed model and query language and present our conclusion.50

2 Existing Work

There is a long-lasting overlap between geographical information systems and the field of data management, especially if

physical networks are studied. Our sensor networks closely align with the definition of “Geosensor Networks” by Nittel (2017).

She points out that the data is often handled by domain scientists who need to work with the data, preferably without needing

2

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

to know the lower-level details of data management. This is also demonstrated in practice by the research of Rodríguez-55

Alarcón and Lozano (2022) for river basins, Hornsby and King (2008) for traffic on road networks, and Gilbert et al. (2018) for

electricity networks, where each network is a transportation network in our definition and is modelled using a graph. Especially

in the case of studying rivers, a lot of work is happening in Belgium, where climate change has a big impact because of the

increasing occurrences of extreme meteorological events, Brouwers et al. (2015). It is, therefore, not surprising to see parties

involved in handling rivers to join forces and invest in full-stack approaches encompassing measuring, storing, analysing and60

managing the data, as in the Internet of Water project1. In this context, colleagues also studied the river Scheldt, Bollen et al.

(2023), but approached the transportation network by modelling it as an interval labelled graph. In this work, we want to focus

more on the raw time-series data in the geographical context.

In recent years, two types of graphs, “Resource Description Framework” (RDF) graphs and “property graphs”, have taken

the foreground. For the latter, the recent definition used is the definition given by Angles (2018). Bonifati et al. (2018) give65

a slightly different definition of property graphs. Before that, other versions of graphs were used, for example, the weighted

graph Devienne and Lebegue (1986). George and Shekhar (2018) use this model and define Time Aggregated Graphs. In a

Time Aggregated Graph, the weight of nodes and edges can vary over time. An example is the travel time in a network. This is

part of dynamic, or temporal, graphs where the study focuses on nodes and edges that exist during a certain time Debrouvier

et al. (2021). There are also advanced systems, for example, GRADOOP by Rost et al. (2022), that incorporate scaling and70

many interaction possibilities. This field is still an active research domain, as the recently started project “HyGrpah”2 shows.

Even though existing temporal graphs might be able to accommodate our case, a dedicated graph definition for a property

graph where certain properties are time series is not available to the best of our knowledge.

One of the first publications regarding the underlying logic or calculus for graph query languages is a query language

on graphs with recursion by Cruz et al. (1987) from 1987. In this work, the relational model is used to store the data. An75

approach based on a graph model is called regular path expressions and is described by Backofen (1993). These ideas have

been extended to regular path queries in tandem with the evolution of the graph model itself, Angles and Gutiérrez (2008).

Since then, different papers have been published that further build on regular path queries. Angles et al. (2017) show how this

all fits together in the query languages. In their vision, the two basic elements of the graph query language are graph patterns

and, secondly, navigational patterns. The evolution is summarised by Bonifati et al. (2018) as the existence of Regular Path80

Queries (RPQ) and Conjunctive Graph Queries (CQ), which, when taken together, is the language of Conjunctive Regular Path

Queries (CRPQ). Adding disjunction to CRPQ results in a more expressive query language called Union Conjunctive Regular

Path Queries (UCRPQ). When considering edge labels in two directions, the theory also talks about Two-Way Regular Path

Queries (2RPQ), Conjunctive Two-Way Regular Path queries C2RPQ and Union C2RPQ, Barceló Baeza (2013). However,

these language classes do not account for reasoning over the properties of graphs. To accommodating this, the class of Regular85

1https://www.internetofwater.be/wat-is-internet-of-water/
2https://hygraph.net/

3

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

Property Graph Queries can be used, based on Regular property graph Logic and Regular property graph Algebra, Bonifati

et al. (2018).

Despite the history, practical query languages have only been implemented in recent years. In contrast to early graph inter-

action, which was mainly imperative API-like, recent query languages are declarative. The most important existing languages

are Cypher (OpenCypher and GQL), SPARQL, Gremlin, and GSQL. There is an effort to standardise the graph query lan-90

guages, as it was done for SQL. This new standard, called GQL, incorporates elements from (open)Cypher, G-core, PGQL and

Tigergraph’s GSQL3. As Deutsch et al. (2022) show, these languages, especially GQL and SPARQL, have a common base for

matching graph patterns, and they call it Graph Pattern Matching Language, GPML. The theoretical foundation of GPML is

recently described by Francis et al. (2022). They provide a calculus that uses the same concepts as the Regular Property Graph

Logic.95

For time-series data, declarative time-series query languages and imperative query approaches exist. An elaborate theory, as

in the case of the graph databases, does not exist to the best of our knowledge. The first versions of the time-series database

InfluxDB4 have the query language InfluxQL, which uses SQL-like syntax and describes the results of the query in a declar-

ative format. Now, a new language is used, called Flux, which is an imperative language where time series form a source in

transformations. In an extended version of PostgreSQL, using TimescaleDB5, time series can be queried using SQL. However,100

they treat time series as tabular data, and they do not exploit the order of the measurements in the time series induced by the

natural order of time.

3 A Data Model for Property Graphs with Time Series

The property graph model is well suited to model transportation networks, and various definitions of this model exist. For

example, the property graph model definition of Angles (2018) and the definition of Bonifati et al. Bonifati et al. (2018). In this105

work, the latter is used, because it aligns better with our applications. Our definition of the Property Graph with Time Series

model adapts the definition of Bonifati et al. in the book “Querying Graphs” Bonifati et al. (2018) and adds time series based

on the idea of Llusà Serra et al. (2016).

Definition 3.1. Given are a set of values V , a finite set of labels L and a set of timestamps T (equipped with a total (temporal)

order ≤). Further, we assume that a set of property keys K is given, with two disjoint subsets KS (S stands for static) and KT110

(T stands for temporal). The sets V , L, T and K are assumed to be pairwise disjoint. Lastly, the setM⊆T ×V denotes the

set of measurements which are (timestamp,value)-pairs.

A property graph with time series, is then defined to be a structure

G = (N ,E ,λ,υS ,υT),
3https://www.gqlstandards.org/existing-languages
4https://www.influxdata.com/products/influxdb/
5https://www.timescale.com

4

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

where:

– N is a finite set of nodes;

– E is a set of directed edges, where each edge belongs to N ×N ;6115

– λ :N ∪E →P<ω(L) is a partial function assigning to nodes and edges a finite set of labels (here, P<ω(L) denotes the

set of all finite subsets of L);

– υS : (N ∪E)×KS →V is a partial function assigning a value to a static property of nodes and edges; and

– υT : (N ∪E)×KT →P<ω(M) is a partial function assigning a finite set of measurements to a temporal property of

nodes and edges. We require that in such a set, no timestamp appears twice, and we call the image of the function υT a120

time series.

Now, we introduce our simplified fictitious running example of such a graph, which is used throughout this paper.

Example 3.1. Our example of a property graph with time series contains seven nodes that all have a numeric identifier from

1 to 7, and these make up the set of nodes N . In addition, there are edges that represent the connectivity of the network. The

connectivity is chosen to be unidirectional to reflect a river-like transportation network. There are six edges in total, being

(1,3),(2,3),(3,4),(4,5),(6,5), and (6,7). A visual representation is shown in Figure 1. Each edge is identified by a pair of

node identifiers. All nodes and edges can have zero or multiple labels to categorise them. In this example, we label all nodes

with the label point, and we label all edges with the label path. Each node and edge is assigned a name to demonstrate the

static properties. For the nodes, this name corresponds to the letter “N” together with the identifier, and for the edges “E” with

a number. For example, node 1 has a static property with key name and value N1, thus (1,name) is mapped to N1. The edge

(1,3), together with name, is mapped to the value E1. All mappings for the static properties are listed below. The temporal

properties form the last part of the example. They consist of a property key and a value. The property value is considered to

be a time series, which is a set of (timestamp,value)-pairs. The values in the time series can be almost anything, but in this

example, we use numerical values. For example, for node 1 the mapping is

(1,water-level) 7→

{(2022-08-15T10:00,14),(2022-08-15T11:00,14),

(2022-08-15T12:00,13),(2022-08-15T13:00,13),

(2022-08-15T14:00,12),(2022-08-15T15:00,12)},

which means that there is a time series with six values on August 15th, 2022 around noon. Next to the nodes, there are also

edges that have a temporal property, there the times series represents the travel-time for an object travelling along that edge.

6In the original work of Bonifati et al. Bonifati et al. (2018), these two sets are disjoint subsets of a bigger object set. We simplify this approach by not

considering this object set. In addition, our directed edges are defined by an ordered pair of nodes, because of which the function η is not needed.

5

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

We remark that, in this example, the timestamps are behaving perfectly. That is, timestamps are spread evenly, and all time125

series use the same timestamps. This does not need to be, probably nor will it be in reality. However, the example is easier to

understand by assuming these characteristics.

The complete formal description of the example is as follows, with the remark that in the time series, the timestamps are on

2022-08-15, but only the time is shown for readability.

– N = {1,2,3,4,5,6,7};130

– E = {(1,3),(2,3),(3,4),(4,5),(6,5),(6,7)};

– λ = {1 7→ {point}, 2 7→ {point}, 3 7→ {point}, 4 7→ {point}, 5 7→ {point}, 6 7→ {point}, 7 7→ {point},
(1,3) 7→ {path}, (2,3) 7→ {path}, (3,4) 7→ {path}, (4,5) 7→ {path}, (6,5) 7→ {path}, (6,7) 7→ {path}};

– υS = {(1,name) 7→ N1, (2,name) 7→ N2, (3,name) 7→ N3, (4,name) 7→ N4, (5,name) 7→ N5, (6,name) 7→ N6,

(7,name) 7→ N7, ((1,3),name) 7→ E1, ((2,3),name) 7→ E2, ((3,4),name) 7→ E3, ((4,5),name) 7→ E4,135

((6,5),name) 7→ E5, ((5,7),name) 7→ E6};

– υT = {
(1,water-level) 7→ {(10:00,14), (11:00,14), (12:00,13), (13:00,13), (14:00,12), (15:00,12)},
(2,water-level) 7→ {(10:01,15), (11:02,15), (12:01,15), (13:01,15), (14:00,15), (15:01,16)},
(3,water-level) 7→ {(10:00,14), (10:30,13), (11:00,14), (11:30,14), (12:00,14), (12:30,15),140

(13:00,14), (13:30,14), (14:00,13), (14:30,12), (15:00,13)},
(5,water-level) 7→ {(10:00,14), (11:00,14), (12:00,15), (13:00,15), (14:00,14), (15:00,14)},
(6,water-level) 7→ {(10:00,18), (11:00,18), (12:00,17), (13:00,18), (14:00,19), (15:00,19)},
(7,water-level) 7→ {(10:00,18), (11:00,17), (12:00,16), (13:00,17), (14:00,18), (15:00,18)},
((3,4),travel-time) 7→ {(10:00,3.10), (11:00,3.50), (12:00,3.49), (13:00,3.47), (14:00,3.46),145

(15:00,3.44)},
((4,5),travel-time) 7→ {(10:00,3.20), (11:00,3.15), (12:00,3.53), (13:00,3.51), (14:00,3.48),

(15:00,3.46)}}.

This concludes our example, of which a visual representation is shown in Figure 1.

The total temporal order ≤ on the set T , assumed by Definition 3.1, induces a total order on the measurements in a time150

series. Indeed, the temporal order ≤ on T induces an order (which we also denote by ≤) onM, as follows: for m1,m2 ∈M,

we define m1 ≤m2 if and only if τ(m1)≤ τ(m2), where τ :M→T is the projection on the time component (that is, τ

returns the timestamp of a measurement). Furthermore, we define ν(m) to be the value of the measurement m (that is, its

second component). In other words, a measurement m ∈M is the couple (τ(m),ν(m)). The above order allows us to define a

“next”-relationship and a “previous”-relationship between measurements in a time series. The definition of both is as follows.155

6

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

Figure 1. Visual graph representation of Example 3.1. The nodes are assigned a label point and the edges are labelled path, these labels

are not shown. The timestamps also include a date, 2022-08-15, but it is not shown to reduce the clutter.

Given two measurements m1 and m2 in a time series s, m2 is the next measurement after m1, denoted next(m2,m1,s) if and

only if m1,m2 ∈ s, m1 < m2, and there is no measurement m in s with m1 < m < m2 (here, < has the obvious meaning of≤
but not equal). The definition for the previous measurement, previous(m1,m2,s), then corresponds to next(m2,m1,s). In the

case that the second condition is dropped (that is, there might exist another measurement between the other two), then we use

predicates after(m2,m1,s) to indicate that m2 occurred after m1 and before(m2,m1,s) for the other case. In addition, we can160

extend this idea to define the first and last measurements. The first(m,s) and last(m,s) predicates are true for a measurement

m, within a time series s, where there is no previous or next measurement for m in s, respectively.

7

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

4 A Formal Query Language for Property Graphs with Time Series

4.1 Extending Regular Property Graph Logic

The concept of Regular Path Queries is well established and is an important concept Nolé and Sartiani (2016)Abiteboul and165

Vianu (1999)Libkin and Vrgoč (2012). For example, Cypher and GQL are based on the theory of Regular Property Graph

Queries, described by Bonifati et al. Bonifati et al. (2018). These queries can be described using a Regular Property Graph

Logic or a Regular Property Graph Algebra. To obtain a query language for property graphs with time series, we extend the

Regular Property Graph Logic with elements to incorporate the time series. More specifically, we add the description of time-

series patterns for a temporal property in a node or an edge. The result is that the temporal properties are handled just as the170

nodes, edges and properties. A query can contain node, edge, path, static property, and temporal properties constraints that can

be evaluated simultaneously. These constraints may depend on each other without the need for multiple queries.

We take the syntax and semantic definitions of Regular Property Graph Logic by Bonifati et al. Bonifati et al. (2018), and

with it, define our logic for Property Graph Query Language with Time Series, or GQL-TS Logic. This is done by adding formal

descriptions for temporal properties and querying them. We show how these logical elements can be realised as time-series and175

measurement patterns in the Graph Pattern Matching Language. In the last part, example queries are given to demonstrate the

different possibilities of our Graph Query Language with Time Series, which we abbreviate as GQL-TS.

4.1.1 Syntax of GQL-TS Logic

In this section, we give the syntactical definition of GQL-TS Logic.

A query, expressed in GQL-TS Logic, is conceived to take a property graph with time series (as presented in Definition 3.1)180

as input and it takes the form of a set of non-recursive Datalog-style rules. Each rule is a description of a sub-graph pattern or

path of the input graph, and is of the form

head← body1, ..., bodym, constraint1, ..., constraintn (1)

which has a head predicate and, in the body, a sequence of body predicates, possibly in combination with additional constraints.

First, we need some additional notions and notations. We use N var to denote the (possibly infinite) set of variables that185

represent nodes in a graph. Similarly, we have the set Evar of variables that refer to edges in a graph. Finally, we assume to

have an infinite set L(2) of fresh predicate names of arity two.

We define the components of a query rule in GQL-TS Logic. First, we define the form of the “head” of a rule, which either

creates a new relation (called ℓ2) or a result relation of some arity a.

Definition 4.1. The head of rule (1) has either the form

ℓ2(x,y)

8

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

where ℓ2 ∈ L(2), x,y ∈N var, or the form

result(x1, ...,xa)

with a≥ 1 and x1, ...,xa ∈N var. In the first case, we define var(head) := {x,y} and in the second case, we define var(head) :=190

{x1, ...,xa}.

Next, we define the form of the “body” components of a rule, which either uses an existing or previously created edge

relation (called ℓ2); computes the transitive closure of such an edge relation (denoted by ℓ∗2); or uses an existing unary node

relation (called ℓ1).

Definition 4.2. Each bodyi in rule (1) has the form195

– ℓ2(x,y) AS e;

– ℓ∗2(x,y); or

– ℓ1(x),

where ℓ2 ∈ λ(E)∪L(2) is of arity two and is not the predicate name used in the head of the rule, ℓ1 ∈ λ(N) is of arity one,

x,y ∈N var and e ∈ Evar. In the first case, we define var(bodyi) := {x,y,e}, in the second case, we define var(bodyi) :=200

{x,y} and in the third case, we have var(bodyi) := {x}.

Next, we define the form of the “constraint” components of a rule and we distinguish between “static constraints” and “time-

series constraints”. In this definition, we need a set Mvar of measurement variables that range over measurements. When

m ∈Mvar, then m.value is a variable that ranges over values in V and m.time is a variable that ranges over timestamps in

T . Finally, we have a set Θv of binary operators (or relations) on the set of values V , and a set Θt of binary operators on T , to205

which the total order on timestamps ≤ is assumed to belong. Typically, we take Θv and Θt to be {=, ̸=,≤,<,≥,>}.

Definition 4.3. Each constraintj in rule (1) is either a static constraints or a time-series constraints.

(1) Static constraints are of the form

– x.ρ1 θv y.ρ2;

– x.ρ1 θv val; or210

– x = y,

where x,y ∈N var∪Evar, ρ1,ρ2 ∈ KS , val ∈ V , and θv a binary operator from Θv . We define var(constraintj) = {x,y}, for

the first and third case, and var(constraintj) = {x} in the second case.

(2) Time-series constraints are of the form

– x.σ = [m1, ...,mp], with p≥ 1;215

9

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

– x.σ = [m1, ...,mk,∗,mk+1,mp], with p≥ 2 and 1≤ k < p;

– v1 θv v2; or

– t1 θt t2,

where x ∈N var ∪Evar, σ ∈ KT and m1, ...,mp ∈Mvar and where, furthermore,

– θv ∈Θv , v1,v2 are220

– values from V;

– of the form m.value, with m ∈Mvar; or

– the result of a function (with co-domain in V) applied to value- and time constants and variables; and

– θt ∈Θt, t1, t2 are

– timestamps from T ,225

– of the form m.time, with m ∈Mvar, or

– the result of a function (with co-domain in T) applied to value- and time constants and variables.

We are ready to give the definition of a rule in GQL-TS Logic.

Definition 4.4. A GQL-TS Logic rule has the form

head← body1, ..., bodym, constraint1, ..., constraintn

with m > 0 and n≥ 0, where head, bodyi and constraintj are as defined in Definitions 4.1, 4.2 and 4.3, with the additional

restriction that

var(head)⊆
m⋃

i=1

var(bodyi)∪
n⋃

j=1

var(constraintj).

A query expressed in GQL-TS Logic is then simply described by a (non-recursive) collection of GQL-TS Logic rules. At230

least one rule in a query needs to have a special head result describing the final output of the query. We need to discuss

the notion of the “dependency graph” of query Q such that we can define what is meant by non-recursive. In the rules of Q,

several predicates may appear: some are existing node and edge predicates of the property graph with time series; some are

newly created predicates. In the “dependency graph of Q”, the predicates are nodes, and there is an edge from predicate ℓ to

predicate ℓ′ if ℓ appears in the head and ℓ′ in the body of some rule in Q. When ℓ appears in the head and ℓ′ in the body of some235

rule, we call ℓ′ a “successor” of ℓ and ℓ a “predecessor” of ℓ′. This dependency graph is called non-recursive if it is acyclic and

recursive if it contains a cycle. With that, we can give the formal definition of a GQL-TS Logic query.

10

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

Definition 4.5. A GQL-TS Logic query is a finite non-empty and non-recursive set of rules such that at least one rule has a

head predicate result and all result predicates have the same arity.

When the predicate result appears more than once, we assume that this results in the unions of the rules, as will be clear240

in the next section, where we define the semantics of GQL-TS Logic.

4.1.2 Semantics of GQL-TS Logic

In this section, we give the semantics of GQL-TS Logic queries when applied to a property graph with time series. Two

parts form the semantics: (a) the bodies and constraints of rules are satisfied by an assignment, and (b) each valid assignment

contributes elements to a set defined by the head of a rule. The first part will be called the satisfaction of rules, and the second245

part will be the evaluation of rules. We first define the rule evaluation and then discuss the satisfaction problem for the bodies

and constraints.

Given a property graph with time series G = (N ,E ,λ,υS ,υT), a query Q, expressed in GQL-TS Logic, consists of a finite

set rules RQ, where a rule r ∈RQ is a GQL-TS Logic rule and where at least one rule in RQ has result(x1, ...,xa) as its

head. We denote the predicate of the head of rule r by head(r).250

When a rule r has head predicate ℓ = head(r), and only when the semantics of all predicates ℓ′ that are successors of ℓ in

the dependency graph of Q have been evaluated on G, then we can define the semantics of the predicate ℓ on G. We remark

that this recursive process stops since the dependency graph of Q is acyclic.

The evaluation of a rule r ∈RQ on G results in the creation of an cr-ary relation, where cr is the arity of ℓ = head(r). This

cr-ary relation is defined in terms of assignments of the form

µ :N var ∪Evar ∪Mvar→N ∪E ∪M,

that assign identifiers to node, edge and measurement variables. Suppose that rule r has the form head← body1, ..., bodyn,

constraint1, ..., constraintm, then we define Sat(r) to be the set of assignments µ for which

G |= (body1 ∧ ·· · ∧ bodym ∧ constraint1 ∧ ·· · ∧ constraintn)[µ]

in the usual sense used in predicate logic (for our specific constraints, in particular those on time series, we give the details

below). If the head of r has the form ℓ(x1, ...,xcr), then the evaluation of the rule r on G is the set

[[r]]G := {(µ(x1), ...,µ(xcr)) | µ ∈ Sat(r)}.

The head ℓ(x1, ...,xcr
) of rule r may appear in several rules of the query Q (possibly with other variable names). Then, we

define the semantics of this predicate ℓ in G to be

[[ℓ]]G :=
⋃

r∈RQ,head(r)=ℓ

[[r]]G.

11

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

The result of the evaluation of the query Q on the property graph with time series G is then defined to be the a-ary relation

[[Q]]G :=
⋃

r∈RQ,head(r)=result

[[r]]G.

What remains to be specified is the meaning of G |= bodyi[µ] and G |= constraintj [µ], for a bodyi in a rule r (as in Defini-

tion 4.2) and constraintj in a rule r (as in Definition 4.3).255

Satisfaction of Body Predicates We define the meaning of G |= bodyi[µ] for each of the various forms of bodyi, that we

defined earlier in Definition 4.2.

A body predicate bodyi in a rule r is satisfied by a mapping µ:

– if bodyi is of the form ℓ2(x,y) AS e and

– ℓ2 ∈ λ(E), then G |= (ℓ2(x,y) AS e)[µ] if there exists an edge in E , such that µ(e) = (µ(x),µ(y)) ∈ E and ℓ2 ∈260

λ(µ(e)); or

– ℓ2 ∈ L(2), then G |= (ℓ2(x,y) AS e)[µ] if there exists an edge in [[ℓ2]]G with µ(e) = (µ(x),µ(y)) ∈ [[ℓ2]]G.

– if bodyi is of the form ℓ∗2(x,y), an additional set is needed, before we can define the satisfaction condition. For this

purpose, we introduce the following notation

x
ℓ,G−−→ y,

which expresses that the tuple (x,y) belongs to (1) the transitive closure of the edges in G with label ℓ, when ℓ is an

existing label in G; (2) the transitive closure of a newly created relation, labelled ℓ, when ℓ is not in the original graph

G. The set [[ℓ∗2]]G is then defined as

{(x,x) | x ∈N}∪{(x,y) | x,y ∈N and x
ℓ2,G−−−→ y}.

We want to remark that the meaning of this set has to be interpreted as “zero or more times an edge with label ℓ”.

Therefore, the pairs (x,x) | x ∈N are included to ensure that assignments where the edge occurs zero times are possible.

Finally, G |= (ℓ∗2(x,y)) if (µ(x),µ(y)) ∈ [[ℓ∗2]]G.265

– if bodyi is of the form ℓ1(x) with ℓ1 ∈ λ(N), then G |= (ℓ1(x)) if µ(x) ∈N and ℓ1 ∈ λ(µ(x)).

Satisfaction of Constraints We define the meaning of G |= constraintij [µ], for each form of constraintj , that appears in

Definition 4.3. For each of the comparison relations θv and θt, we also use this symbol for their interpretation in the structure

G (abusing notation).

– If constraintj is of the form x.ρ1 θv y.ρ2, then G |= (x.ρ1 θv y.ρ2)[µ] if µ(x),µ(y) ∈N ∪E and υS(µ(x),ρ1)270

θv υS(µ(y),ρ2));

12

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

– If constraintj is of the form x.ρ1 θv val, then G |= (x.ρ1 θv val)[µ] if µ(x) ∈N ∪E and υS(µ(x),ρ1) θv val;

– If constraintj is of the form x = y, then G |= (x = y)[µ] if µ(x) = µ(y).

For the constraints concerning the time series, two additional functions are assumed to exits. We assume a function exists,

with co-domain in V , that takes as input value- and time constants and variables. We denote this function with fV . Similarly,275

the function taking value- and time constants and variables with co-domain T is represented with fT .

– If the form of constraintj is x.σ = [m1, ...,mp], then G |= (x.σ = [m1, ...,mp])[µ] if:

– µ(x) ∈N ∪E ,

– υT (µ(x),σ) = {µ(m1), ...,µ(mp)},
– and for all ml with 1≤ l ≤ p:280

• µ(ml) ∈M, and

• next(µ(ml+1),µ(ml),υT (µ(x),σ)) holds.

We remark that if p = 1, then next() can not be satisfied and should be ignored (similarly, when l = p).

– If the form of constraintj is x.σ = [m1, ...,mk,∗,mk+1,mp], with p≥ 2 and 1≤ k < p, then G |= (x.σ = [m1, ...,

mk,∗,mk+1,mp]) if:285

– µ(x) ∈N ∪E ,

– υT (µ(x),σ) = {µ(m1), ...,µ(mp)},
– and for all ml with 1≤ l ≤ p:

• µ(ml) ∈M, and

• next(µ(ml+1),µ(ml),υT (µ(x),σ)) holds, except for l = k, then after(µ(ml+1),µ(ml),υT (µ(x),σ)) holds.290

– If constraintj has the form v1 θv v2, and:

– v1 is of the form m.value and v2 ∈ V , then G |= (v1 θv v2)[µ] if µ(m) ∈M and ν(µ(m)) θv v2;

– v1 is the result of fV(m.time) with m ∈Mvar and v2 ∈ V , then G |= (v1 θv v2)[µ] if µ(m) ∈M and

fV(τ(µ(m))) θv v2;

– v1 and v2 are value constants, the result of fV applied to time constants, or the result of fV after µ applied on295

variables, then G |= (v1 θv v2)[µ] if v1 θv v2.

– If constraintj has the form is t1 θt t2, and

– t1 is of the form m.time and t2 ∈ T , then G |= (t1 θt t2)[µ] if µ(m) ∈M and τ(µ(m)) θt t2;

– t1 is the result of fT (m.value) with m ∈Mvar then, G |= (t1 θt t2)[µ] if µ(m) ∈M and fT (ν(µ(m))) θt t2;

– t1 and t2 are value constants, the result of fT applied to value constants, or the result of fT after µ applied on300

variables, then G |= (t1 θt t2)[µ] if t1 θt t2.

13

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

4.2 Graph Query Language with Time Series

In this section, the GPML notation is extended with elements to describe time series with time-series patterns consisting

of measurement patterns. Important is that, in a time-series pattern, two consecutive measurement patterns implicate that

the measurements matched need to fulfil the next() relationship. First, the syntax of a measurement pattern is described.305

Afterwards, we demonstrate how these can be combined into a time-series pattern, and finally, these time-series patterns are

linked with existing GPML notation.

4.2.1 Measurement Pattern

We consider a measurement a (timestamp, value)-pair. A measurement pattern <m> describes a measurement, where m.timestamp

represents the timestamp component and m.value the value component. For example, if m is matched to (2022-08-15T13:00,17),310

then m.timestamp = 2022-08-15T13:00 and m.value = 17.

4.2.2 Time-Series Pattern

A time series consists of one or multiple measurements with an order on their timestamp. Therefore, a time-series pattern is one

or multiple measurement patterns that describe a subset of the time series together. Two concatenated measurement patterns

express two measurements for which the next predicate holds. This means, for the pattern <m><n> is series s, next(n,m,s)315

is true (or previous(m,n,s)).

In GPML, some quantifiers allow patterns to be repeated. The Kleene star is the most generic but is accompanied by three

additional quantifiers. These quantifiers can be used in the time-series patterns. However, the meaning is slightly different.

Between two measurements, m and n, an additional, anonymous measurement can be matched if the Kleene star precedes the

second measurement pattern, for example, <m>*<n>. The repetition can be limited by a minimum *{a,}, that is, the pattern320

has to occur at least a times, or by a range *{a,b}, in which case the pattern has to occur at least a times and not more than

b times. The last quantifier is +, which is equal to *{1,}.

4.2.3 Time-Series Patterns as Temporal Properties

Time-series patterns match temporal properties that belong to nodes or edges. The same notation as for the static properties is

used to link the time-series patterns to a graph pattern. To recap, we will first show some important notations of GPML. We325

refer to Deutsch et al. (2022) for a complete description of the notation. A pattern in GPML describes the structure to which

sub-graphs need to adhere to be considered a match. Additional information, such as properties and labels, are constraints

added to the pattern.

A node is described by a set of round brackets, a possible name and a label within the brackets, separated by a colon.

Property constraints can be expressed after the WHERE clause. The property key is written, followed by a constant or variable330

that constrains the property value. This is demonstrated in the following example.

14

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

(a:point WHERE name = 'N1');

The pattern describes a node with label point and a property name that needs to have the value N1. Each node that matches

the pattern is assigned to the variable a. We remark that, a represents one node match at a time.

An edge is represented by two square brackets and an arrow. The pattern can contain a label, an edge type, a variable name,335

and properties. The notation for these three elements is exactly the same as they are for node patterns.

()-[b:path WHERE name = 'E3']->();

In this example, an edge is described with a type path, and it must have a property name, which should be equal to E3.

The direction of the edge is indicated by the arrow to the right. The two () patterns describe the existence of a node with no

additional requirements, but any valid node pattern is allowed. Similar to the empty nodes, the most basic edge pattern between340

two nodes is -[]-, which only requires the existence of an edge with no additional constraints. Together with two blank nodes,

()-[]-(), the pattern would produce all matches of two nodes with an edge in between them. An edge can be matched zero

or multiple times by using the Kleene star or one of the other repetition notations.

Finally, a query consists of node- and edge patterns, preceded with the keyword MATCH, and followed by an optional

keyword WHERE, after which additional constraints can be written using the variables that are used in the node- and edge345

patterns.

To express a temporal property of a node or edge, a time-series pattern needs to be added to the node or edge properties,

together with the name of the temporal property. This is expressed by writing after the WHERE keyword, the temporal property

key, then a colon, followed by a time-series pattern. To differentiate the static and temporal properties, both groups are separated

by the keyword SERIES, and we will always place the static properties first.350

4.2.4 Examples

The following are queries for the running example, given in Example 3.1 and shown in Figure 1.

Example 4.1. In this example, the query’s result is the temperature at two o’clock in node with the name N6. The corre-

sponding pattern matches node with name equal to N6 and a water-level property, which is a temporal property, with one

measurement pattern x. The timestamp of measurement x needs to be equal to 2022-08-15T14:00.355

MATCH (n:point WHERE name = "N6" SERIES water-level = <x>)

WHERE x.timestamp = "2022-08-15T14:00";

There is only one match in the example graph, that is, node 6 with at two o’clock the value 19.

Example 4.2. In this second example, two different nodes are matched, requiring both to have a temporal property water-level,

in which a measurement with the same value at the same time exists.360

15

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

MATCH (n:point WHERE SERIES water-level = <a>),

(m:point WHERE SERIES water-level =)

WHERE a.value = b.value

AND a.timestamp = b.timestamp

AND NOT n = m;365

In the example graph, this query will produce 8 matches. One where n maps to node 1 and m maps to node 3 and where the

value is 14 at 10:00 and 11:00. Secondly, one where m is mapped to 5 for 10:00 and 11:00 with a value 14. Another

one, with n→ 3 and m→ 5 with at 10:00 and 11:00 the value 14. The last match is for nodes 2 and 5 with value 15 at

12:00 and 13:00.

We remark that there are 16 matches. The same match can be made for each match given with the nodes reversed for n and370

m. These 8 additional matches are not shown. This query can prevent the double results by requiring that the ID of node n is

smaller than that of node m.

Example 4.3. The following example focuses on variable length paths and the variable length time-series patterns.

MATCH (n:point WHERE name = "N7" SERIES water-level = <a>)

<-[:path+]-(m:point WHERE SERIES water-level = *<c>375

WHERE a.timestamp = "2022-08-15T15:00"

AND a.timestamp = c.timestamp

AND b.value >= a.value;

The query should match all nodes upstream of node 7 that contain a temporal property water-level, wherein a mea-

surement exists that occurred before 15:00 and where the value of that measurement is higher than the value in node 7 at380

15:00. Valid matches are where m is equal to node 6 and where measurement b is assigned to (14:00,19), (13:00,

18), (11:00, 18), or (10:00, 18). We remark that the measurement of 15:00 in node 6 is not matched because the

previous() predicate still needs to be true for measurements b and c. Similarly, node 7 is not matched with n and m because

+ is used in the edge pattern, which means the edge should occur at least once.

The temporal properties are treated at the same level as static properties, nodes, and edges.7 This means the dependency385

between temporal and static properties can be expressed within one query. The following example depicts a situation where

node or edge properties determine the time a temporal property needs to be constrained.

Example 4.4. In this example, the query matches measurements based on values that occurred earlier in the path we want to

match. The time that the travel-time series are matched depends on the measurements in the node. Further, down the path,

it again depends on the previous matches.8390

7We refer to section 5 that shows an equivalence between temporal properties and nodes and edges in the graph.
8There is more to be said about the equality of time stamps in time series. One can not easily assume that the exact same timestamp is present in two

different time series. However, for now, this is assumed.

16

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

MATCH (a:point {water-level=<m1>})

-[x:path {travel-time=<t1>}]->(b:point {water-level=<m2>})

-[y:path {travel-time=<t2>}]->(c:point {water-level=<m3>})

WHERE t1.value > threshold

AND t1.time = m1.time395

AND m2.time = m1.time + t1.value

AND t2.time = m2.time

AND m3.time = m2.time + t2.value;

Extending this example to include static properties in the constraints is possible. This could be, for example, when only the

speed is given, and the length of the edge is needed to calculate the travel time. We want to remark that taking the sum of two400

values is not described in the logic, nor are other operations on values. We assume they can be used as long as the result is

again a valid value. For example, in current Cypher implementations, such operations do exist.

Compared to procedures implemented in a query language or methods implemented using drivers for the databases, the

method presented here gives more possibilities for writing constraints. In addition, early pruning of the graph or time-series

matching is now possible. If they are treated separately, the graph part needs to be retrieved first, and subsequently, the time-405

series data needs to be queried, or vice versa. This does not provide the same flexibility as our method.

5 Implementation

To demonstrate the idea in practice, we developed a database system that can store graphs as defined in Definition 3.1 and

query it with our proposed query language. Based on the additions described in section 4.2, an existing query language is

extended to facilitate queries considering the new temporal properties. We chose to realise this with the Neo4j database. It is410

well-established in practice and provides a good foundation. The open-source query parser from OpenCypher, used in Neo4j,

provides a suitable starting place for the query-language implementation. Adding other functionalities to Neo4j is possible by

using user-defined functions and procedures.

5.1 Storing in Practice

To store the time series in the graph database, we build the concept of the Full Graph Model. In this approach, the graph415

database is used to store the network’s topology and time series. The latter are represented as linked lists of nodes in the graph.

For each measurement, a node containing the timestamp and value of the measurement is created. These measurements can be

linked by edges, connecting all measurements in the temporal order. This means that for each time series, there is a linked list

of nodes where each node is a measurement. A head time series node is added to these lists when the time series is linked to a

node (of the spatial part). This way, the node of the topology and the head nodes can be linked by a specially typed edge. For420

edges, this is not possible. There, a similar link can be established by adding a unique ID in the head node of the time series and

17

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

the static properties of the edge. This would also be possible for nodes, leading to a more consistent design. But we asses that

it would impact the query performance, although future research has to verify this. We chose to link the oldest measurement as

the first measurement to the head node. This means the latest measurement is stored at the end of the linked list. We selected

this approach because, this way, the order of measurements described in the queries corresponds to the order in which they are425

matched. It could be interesting to store the most recent measurement first because users might be more interested in recent

measurements. Of course, the Full Graph model has a noticeable impact on the total number of nodes and edges stored, as we

will show. However, practical experiments have not yet shown any limitations.

5.2 Querying in Practice

A new query parser was implemented using Antlr9 to implement the query language. This parser can parse the Graph Query430

Language with Time Series and translate the queries into standard Cypher. This is possible because time-series and measure-

ment patterns are actual graph patterns. Specifically, it is possible to translate each measurement pattern into a node pattern and

a time-series pattern into a path pattern. These translated patterns can be joined with the pattern for the topology in one query,

which can be evaluated by the default query engine of Neo4j. This query translator is implemented with a Spring Boot server

that takes a query, sends the translation to the Neo4j database, and returns the result. The user can interact with this system435

using a web interface implemented using React.

Our grammar for the query language is based on the G4 Cypher grammar. The original grammar specification can be

found on the OpenCypher git repository10. The grammar describes valid measurement and time-series patterns by adding the

following rules.

oC_SeriesPatterns :440

SERIES SP oC_SeriesPattern SP? (',' SP? oC_SeriesPattern)* ;

oC_SeriesPattern :

oC_PropertyKeyName SP? ':' SP? oC_MeasurementPattern+ ;

445

oC_MeasurementPattern :

oC_RangeLiteral?

oC_LeftArrowHead SP?

(oC_Variable | (oC_Expression SP? ',' SP? oC_Expression))

SP? oC_RightArrowHead ;450

SERIES :

9https://www.antlr.org
10It was deleted on October 17th 2022, commit 38b5e39). We use the version available on the repository on 27 July 2022.

18

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

('S' | 's') ('E' | 'e') ('R' | 'r')

('I' | 'i') ('E' | 'e') ('S' | 's') ;

To link these patterns with the existing property patterns, only the rule expressing the mapping for properties needs to be455

updated to include the time-series pattern.

oC_MapLiteral:

'{' SP?

(oC_PropertyKeyName SP? ':' SP? oC_Expression SP?

(',' SP? oC_PropertyKeyName SP? ':' SP? oC_Expression SP?)*)?460

(oC_SeriesPatterns)?'}' ;

Compared to the description with GPML, the properties of nodes and edges are not expressed after a “WHERE” clause but

are enclosed in curly brackets. In addition, equals signs linking property keys and property values (for static and temporal

properties) are replaced by a colon. This nicely demonstrates that the description of our query language with GPML is easily

implemented in any GPML-based query language. We want to remark that recently, a new specification version was made465

available, and our changes are not yet compatible with this new version. Our full grammar specification is available on OSF11.

5.3 Experiment

This section focuses on implementing the proposed theory and testing its feasibility. An experiment was conducted to study

water-quality measurements in the Internet of Water project as proof of concept.

In Flanders, the “Internet of Water” project12(IoW) aims to enhance monitoring and governance of the Flemish waterways.470

Hundreds of sensors are deployed and monitored along the Flemish rivers. The sensors’ data is made available on the data

platform of the Flemish environmental agency, which is one of the partners in the project. VITO (Flemish Institute for Techno-

logical Research) contributes to the project by analysing the data Pagán et al. (2020) to answer questions such as “What is the

salinity at any possible part of the river?” and “What is the current drought status of a river?”. These questions are important

to scientists and managers since climate change leads to more extreme meteorological weather phenomena. These situations475

affect water supply and water quality, for example, due to the influence of the salty sea on rivers, which can harm the drinking

water and surrounding land area, Gobin (2012).

In this set-up, we study the Yser river west of Flanders, depicted in Figure 2. It is a prone region to salt intrusion because it

is close to the sea. In dry periods, salty seawater will push land inwards along the river and intrude via ground water, Desmet

and Bauwel (2023). For this reason, 42 electrical-conductivity (EC) and water-temperature (WT) sensors have been placed on480

the river, and we use the resulting measurements to pose typical questions.

11DOI: 10.17605/OSF.IO/J9CN5, https://osf.io/j9cn5/
12https://www.internetofwater.be/wat-is-internet-of-water/

19

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

Figure 2. Overview of the Yser river in the west of Belgium. Only a subset of the stations are shown. There are more stations in the data set,

but they are not drawn to reduce clutter.

20

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

Table 1. Disk usage of the Neo4j database for the Yser data.

Node storage Edge storage Properties storage Total storage

5.93 MB 13.49 MB 32.53 MB 53.04 MB

To model the river, we use the Vlaamse Hydrographic Atlas (VHA), a digital GIS data set representing all rivers in Flanders.

In this data set, the rivers consist of smaller river segments, represented as line geometries. Sensors are attributed to segments,

and because the researchers are interested in studying the river per segment, we chose to model each segment as a node in the

graph. If water flows from one segment to another, the two nodes, representing those two segments, are connected by an edge485

indicating the water flow. In total, there are 534 segments in this use case. The graph contains thus 534 nodes, and they are

connected by 541 edges. Distributed over this network are 42 sensors, each producing EC measurements every 15 minutes13.

From now on, when values of the measurements are shown, they are in micro Siemens per centimetre, µS/cm. We selected the

data between the first of January 2022 and the first of May 2022. One time series has 4 months of data with a resolution of 15

minutes, which results in 11520 measurements per sensor. However, since it is real life and some measurements are missing,490

not all series do have so many measurements. With the measurements added, the database using the Full Graph Model consists

of 395 074 nodes. This results in Neo4j (version 4.2.3) in 53 MB disk space usage. Details are included in Table 1.

Before we discuss the queries in detail, some additional information about the use case is needed. Most of the sensors in the

Internet of Water are numbered and named, for example, “IOW1” for Internet of Water sensor number 1. Some sensors have

slightly different names because they already existed before the project. This name can be used to identify the series of the495

sensor in the graph uniquely. Our implementation allows users to add labels to the series, as it is possible for nodes and edges.

For this use-case, all series are EC25 measurements, so we assign the label “ec25” to each series. To identify a series by name

or label, the following notation is used: name:label:pattern. For example, IOW1:ec25:<a> is the pattern for a series

with the name “IOW1” and the label “ec25”. N additional constraints on the measurement a. Similarly, we can use the pattern

IOW1::<a> for the series with the name “IOW1” and no label requirements, or :ec25:<a> for a series that has the label500

“ec25” with no name requirements. This addition is not yet described or defined in our proposed Logic but is implemented in

the proof of concept. We will study the data by posing different questions researchers within the Internet of Water pose. These

queries will be increasingly complex.

Query 1 Every segment is uniquely identified with the vhas number (the id of the segment). In this first query, we are going

to look up the location of a sensor by querying for the vhas of the segment. The DISTINCT keyword ensures that only one row505

is returned. Because every measurement in the series can be matched with the pattern, the query without DISTINCT would

return as many rows as measurements in the series. The result of this query is one record containing the value 6033646 for

n.vhas.

MATCH (n:segment {SERIES IOW1:ec25:<a>}) RETURN DISTINCT n.vhas;

13Waterinfo.be already takes into account the water temperature when providing the EC values.

21

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

Table 2. Result table containing first ten records from the answer to Query 3.

n.vhas a.value

6042697 7441.90

6018926 2899.00

6033571 777.16

6021226 3705.00

6021185 1470.00

6033487 751.89

7073733 2388.43

6033467 10362.00

6033467 7842.00

6033615 8597.00

... ...

Query 2 The second example query is a typical question where the value of a specific moment and location is requested. In510

this case, the value of the IOW 1 sensor at midnight on March 30th.

MATCH (n:segment {SERIES IOW1::<a>})

WHERE a.timestamp = datetime("2022-03-30T00:00:00+0000")

RETURN a.value;

The value, that is a.value, is 1230 for the series of IOW1 at the specified timestamp. The result of the query contains only515

one record because there is only one match in the graph for this pattern.

Query 3 With example three, we show how a label can access a series with a specific type. The names or locations might

be unknown, but the series type is known. Here, we want to access EC measurements and see their values on March 30th at

midnight. The results are shown in Table 2 where, next to the value, the vhas is returned of the segment where the series is on.

In total 36 records are returned but we truncated the table for readability reasons.520

MATCH (n:segment {SERIES :ec25:<a>})

WHERE a.timestamp = datetime("2022-03-30T00:00:00+0000")

RETURN n.vhas, a.value;

Query 4 This query demonstrates a more advanced series pattern. Because consecutive measurement patterns match con-

secutive measurements in the series, it is possible to describe a peak. A peak is described as three measurements a, b and c525

where the value of b is higher than the value of a and c.

22

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

Table 3. Five first records retrieved by Query 4 showing 5 peak values in sensor IOW1.

b.timestamp b.value

2022-01-01T01:00:00Z 536.72

2022-01-01T02:00:00Z 536.17

2022-01-01T06:30:00Z 557.84

2022-01-01T07:30:00Z 557.15

2022-01-01T11:15:00Z 550.97

MATCH (n:segment {SERIES IOW1:ec25:<a><c>})

WHERE a.value < b.value AND c.value < b.value

RETURN DISTINCT b.timestamp, b.value LIMIT 5;

The result of this query, where only the first five matches are returned, is shown in Table 3. With each peak, we also return530

the timestamp of measurement b to see when the peak occurred. Although this query matches many small local peaks, it

demonstrates the declarative power of time-series patterns. More advanced peak descriptions can be built to find peaks of

interest more precisely.

Query 5 This query demonstrates how a surpass of a threshold in a series can be identified. Such a query interests scientists

who, for example, want to find river pollution spills. They know that the EC value would pass a threshold in the event of a spill,535

but they do not know if and where this happens. The following query matches measurements passing a threshold and returning

where and when this occurred.

MATCH (n:segment {SERIES :ec25:<a>}) WHERE a.value > 90000

RETURN n.vhas, a.timestamp, a.value;

The database returns one record: ("6033602", 2022-02-22T11:45Z, 99999.0). The vhas indicates on which seg-540

ment in the river the spill would happen, the timestamp of the measurements indicates the time of the event, and we added

the measured EC value. This type of query can also be used to set up data validation or find faulty measurements. Likely, this

result could be a positive match for being a faulty measurement since it is exceptionally high.

Query 6 The values of the measurements can be used to derive analytical results. In this case, the query retrieves a series

at a specific location and calculates a moving average window. Every possible pattern match is returned as a record, and each545

record selects 5 consecutive measurements.

MATCH (n:segment {SERIES IOW1:ec25:<a><c><d><e>})

WHERE a.timestamp < datetime("2022-01-01T04:00:00+0000")

RETURN a.timestamp, (a.value+b.value+c.value+d.value+e.value)/5;

23

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

Table 4. Records showing the average moving window returned by Query 6.

a.timestamp (a.value + b.value + c.value + d.value + e.value)/5

2022-01-01T00:00:00Z 537.16

2022-01-01T00:15:00Z 536.79

2022-01-01T00:30:00Z 536.53

2022-01-01T00:45:00Z 536.31

2022-01-01T01:00:00Z 536.20

2022-01-01T01:15:00Z 536.09

2022-01-01T01:30:00Z 536.10

2022-01-01T01:45:00Z 536.35

2022-01-01T02:00:00Z 536.69

2022-01-01T02:15:00Z 537.12

2022-01-01T02:30:00Z 537.57

2022-01-01T02:45:00Z 538.22

2022-01-01T03:00:00Z 539.80

2022-01-01T03:15:00Z 541.69

2022-01-01T03:30:00Z 543.76

2022-01-01T03:45:00Z 546.06

The results in Table 4 show the moving average for sensor IOW1 during the first 4 hours of the first of January.550

Query 7 Using more advanced graph patterns is useful to describe network structures where the location might be unknown.

As this query shows, it looks for a path between two given locations in the network and retrieves the value measured on March

30th at midnight along possible paths. Specifically, the query looks for each EC25 labelled series on a possible path between

segment 6031906 and segment 6033656.

MATCH (:segment {vhas: "6031906"})-[:flowsto*]->555

(n:segment {SERIES :ec25:<a>})-[:flowsto*]->

(:segment{vhas: "6033656"})

WHERE a.timestamp = datetime("2022-03-30T00:00:00+0000")

RETURN n.vhas, a.value;

The database returns that at this point in time, there is a path with a series on segment 6042697, and the value there at this point560

in time is 7441.90.

Query 8 In the IoW project, the water team of VITO established different use cases and models to analyse the Yser River

and its water quality. One of the results is the IGOR tool, Desmet and Bauwel (2023), which is used to analyse electrical

24

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

conductivity on the Yser river. IGOR provides the ability to interpolate the sensor’s measurements for any given location on

the river. This interpolation query is the final analysis step to demonstrate and test the database in this context. In the graph, it565

should be possible to do the same interpolation for any location. Locations in the graphs are considered to be the nodes, and the

nodes correspond to segments. This would mean the interpolation can be done for each segment, with or without a sensor. This

matches the closest sensor upstream and downstream of the specified location. Subsequently, it interpolates the values for the

provided all points in time linearly to the distance between the sensors and the location. This means that, for a given location,

the entire time series is interpolated as long as both sensors have a value for the same moment in time.570

MATCH up_path = (up:segment {SERIES IOW19:ec25:<x>})

-[:flowsto*]->(i:segment {id:"14674"}),

down_path = (i:segment {id:"14674"})-[:flowsto]->

(down:segment {SERIES IMC_910040:ec25:<y>})

WHERE x.timestamp = y.timestamp575

WITH *, REDUCE(s = 0, seg IN nodes(up_path) | s + seg.length) as up_distance,

REDUCE(s = 0, seg IN nodes(down_path) | s + seg.length) as down_distance

RETURN x.timestamp,

(x.value*(1-(up_distance/(up_distance+down_distance))))

+ (y.value*(1-(down_distance/(up_distance+down_distance))))580

The system’s power lies in the fact that the sensors don’t need to be known. With an additional subquery, the closest sensors can

be determined. The first MATCH part is the subquery that first explores the shortest path to a sensor and calculates the distance

to the sensors using two WITH clauses. This step must be separated from the rest because taking the minimum of a group of

matches is impossible if other fields are used. Using other fields with aggregation functions results in group-by clauses, similar

to SQL. To prevent this, the minimum is determined in the subquery. These minimum distances are subsequently used in the585

second MATCH query to look up the series values and interpolate the EC values. The second part is the same query as before,

except that no sensor name is used, and instead, the distance of the matched sensor is compared to the minimum distance

obtained in the first part.

MATCH up_path = (up:segment {SERIES :ec25:<x>})-[:flowsto*]->

(i:segment {id: "14674"}),590

down_path = (i)-[:flowsto*]->(down:segment {SERIES :ec25:<y>})

WITH REDUCE(s = 0, seg IN nodes(up_path) | s + seg.length) as up_distance,

REDUCE(s = 0, seg IN nodes(down_path) | s + seg.length) as down_distance

WITH min(up_distance) as up_min, min(down_distance) as down_min

595

MATCH up_path = (up:segment {SERIES :ec25:<x>})-[:flowsto*]->

(i:segment {id:"14674"}),

25

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

down_path = (i)-[:flowsto*]->(down:segment {SERIES :ec25:<y>}),

WHERE x.timestamp = y.timestamp

WITH *,600

REDUCE(s = 0, seg IN nodes(up_path) | s + seg.length) as up_distance,

REDUCE(s = 0, seg IN nodes(down_path) | s + seg.length) as down_distance

WHERE up_distance = up_min AND down_distance = down_min

RETURN i.id, x.timestamp, x.value, y.value,

(x.value*(1-(up_distance/(up_distance+down_distance))))605

+ (y.value*(1-(down_distance/(up_distance+down_distance)))) as inter;

For the evaluation, the interpolation is executed for segment 14674 with all values available from January 1 until January 5.

The sensor IoW 18 is located on this segment, meaning all interpolated values can be compared to actual measured values.

The mean square root error can be determined from this, which is 44.61. With values in the range of 450 to 675, this error is

less than 10%. Considering that the sensors have an error margin of up to 10% for the measured EC values, this result can be610

considered good. However, the interpolation performance is not the goal of this paper. The main takeaway of this use case is

that the proposed system can aid in solving relevant questions for transportation networks. That is what we considered proven

by being able to fulfil the same work as a dedicated programmed tool such as IGOR does.

6 Discussion

We acknowledge that it is possible to use existing temporal graphs to model and query transportation networks. There is work615

from Kuijpers et al. Kuijpers et al. (2022) that models property graphs with categorical properties through time. Here, we

explicitly want to model time series, possibly with a high resolution, and we want to emphasise that the network is stable,

whereas the properties can take on many values through time. In addition, our approach exploits the fact that time series have

a natural order and uses this in graph pattern expressions. We discussed the advantages of our query language compared to the

procedures defined in addition to the existing query language. Nonetheless, procedures might need to be written because not620

everything is expressible in the proposed query language. That is, expressing constraints on each pair of nodes in a path where

the path length is unbounded or expression constraints on each pair of measurements where the number of measurements is

unbounded is impossible.

The usage of labels in the experiment is a useful feature that was possible because the Full Graph Model is used in the

implementation. The implementation allows the labels of nodes to be used as labels for the time series. However, this use of625

labels for time series properties is not fully explored and defined. This should be realised in future steps to standardise the

working, independent of the implementation method.

For each topology pattern, multiple measurement patterns can be valid in a time series. The number of matches in the end

result is the sum of all valid patterns in the time series for each valid spatial pattern. At most, each measurement is a valid match

26

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

for a time-series pattern, and then the number of topological matches needs to be multiplied by the number of measurements in630

the relevant time series. This can impact the efficiency. Based on the model and logic, here presented, this can now be studied

more formally.

At the moment of writing, the system is demonstrated to and evaluated by expert researchers in hydrology and energy fields

to evaluate the performance further and identify additional functionality. Therefore, the experiment shown should be seen as

a proof of concept. A performance analysis or benchmark is not conducted because the current implementation is not mature635

enough, and such a study would lead to false results. For example, the current translated queries rely on the transitive closure

computation (the “*” operator) in Neo4j. However, earlier research has shown that this operator cannot handle path queries with

unbound length as efficiently as other functions Bollen et al. (2021). However, we would like to indicate the usability based on

this proof of concept. The database Neo4j database (version 4.2.3) was deployed on a server with Ubuntu 20.04, a two-core

system (Intel Xeon Gold 6136 CPU @ 3.00GHz) and 16Gb of memory. Queries 1 to 7 ran and retrieved results between 399640

ms and 299 seconds (299358 ms), including transferring the records over the network to the local computer. Plus one-minute

query time occurred for queries 3, 7, and 8. The translation of the queries from our language to full Cypher was performed

between 5 ms and 382 ms. Again, we want to stress that all these results merely indicate the current state. The implementation

is focused on functionality and not performance-oriented, nor are the timings conducted repeatedly. An objective study needs

to be conducted to validate the performance of an implementation that exhibits a higher technology readiness level.645

7 Conclusions

Transportation networks are a recurrent research topic and can be modelled using property graphs. With the rise of the Internet

of Things, measuring the status of the networks has become easier and the data volume has increased in terms of number of

sensors and resolution of the measurements. These sensors produce time series that, ideally, should be included in the property

graphs. Temporal graphs focus on nodes and edges being valid at a certain time. In contrast, transportation networks rarely650

change their topology, but the measurements are properties of nodes or edges, where the values change through time. There

also exist graph databases for storing property graphs, and time-series databases to store the measurements, but a combination,

exploiting the characteristics, is missing. In this work, a property graph model with time series is proposed to provide a basic

model. This model considers time series on nodes and edges together with the traditional properties as first class citizens. The

model is accompanied with a query language logic, exploiting the natural order on time of the measurements, to describe graph655

patterns that can be matched. In addition, the paper shows how this logic can be realised in graph query languages based on the

Graph Pattern Matching Language (GPML). This all together, creates property graphs with time series, and leads to a tool set

for querying transportation networks, or transforming them for more advanced processing. For the first time, it is possible to

express patterns where there are constraints that take into account nodes, edges, properties, and measurements of time series,

that is timestamp and value pairs, at the same time. These can all depend on each other, providing the possibility to search and660

evaluate graphs on all these constraints at the same time. There is more work needed to formally study these graph with respect

to complexity and evaluation, as the increased data size might impact the query evaluation. However, there are also possibilities

27

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

to exploit optimisations. For example, the new constraints can prune path searches earlier, or path searches can be limit the

number of time series that need to be processed. The next step is, to realise this all in practice, by implementing the property

graphs with time series in an actual database, and providing the proposed query language together with a query engine that665

process the queries. With this theory, a first step is set to store, process, and then also analyse transportation networks based on

property graphs with time series. This in turn, can then support research concerned with these networks such as river networks,

electricity networks and heat networks amongst other.

Data availability. The sensor data used in this paper is owned by Flemish Environmental Agency and made available on waterinfo.be14.

The source network structure data is free and publicly accessible on the website of the Flemish Government download.vlaanderen.be15. A670

processed version of these two data sets, as it is used in the experiment section, can be found as a Neo4J database dump on OSF with DOI:

10.17605/OSF.IO/J9CN5, https://osf.io/j9cn5/.

Competing interests. There are no competing interests to declare.

Acknowledgements. The authors would like to thank Alejandro Vaisman and Valeria Soliani for fruitful discussions on property graphs with

time-series data.675

14https://www.waterinfo.be/Themas#item=water%20quality/physical%20parameters
15https://download.vlaanderen.be/catalogus?q=Vlaamse%20Hydrografische%20Atlas

28

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

References

Abiteboul, S. and Vianu, V.: Regular Path Queries with Constraints, J. Comput. Syst. Sci., 58, 428–452,

https://doi.org/10.1006/jcss.1999.1627, 1999.

Angles, R.: The Property Graph Database Model, in: Proceedings of the 12th Alberto Mendelzon International Workshop on Foundations

of Data Management, Cali, Colombia, May 21-25, 2018, vol. 2100 of CEUR Workshop Proceedings, pp. 1–10, CEUR-WS.org, Cali,680

Colombia, 2018.

Angles, R. and Gutiérrez, C.: Survey of graph database models, ACM Comput. Surv., 40, 1:1–1:39, 2008.

Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., and Vrgoč, D.: Foundations of Modern Query Languages for Graph Databases,

ACM Comput. Surv., 50, https://doi.org/10.1145/3104031, 2017.

Backofen, R.: Regular path expressions in feature logic, in: Rewriting Techniques and Applications, edited by Kirchner, C., pp. 121–135,685

Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-662-21551-7, 1993.

Barceló Baeza, P.: Querying Graph Databases, in: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems, PODS ’13, p. 175–188, Association for Computing Machinery, New York, NY, USA, ISBN 9781450320665,

https://doi.org/10.1145/2463664.2465216, 2013.

Bollen, E.: Querying Sensor Networks Using Temporal Property Graphs, in: New Trends in Database and Information Systems - ADBIS690

2022, Turin, Italy, September 5-8, 2022, Proceedings, edited by Chiusano, S., Cerquitelli, T., Wrembel, R., Nørvåg, K., Catania, B.,

Vargas-Solar, G., and Zumpano, E., vol. 1652 of Communications in Computer and Information Science, pp. 607–614, Springer, Berlin,

Heidelberg, https://doi.org/10.1007/978-3-031-15743-1_55, 2022.

Bollen, E., Hendrix, R., Kuijpers, B., and Vaisman, A. A.: Towards the Internet of Water: Using graph databases for hydrological analysis on

the Flemish river system, Trans. GIS, 25, 2907–2938, https://doi.org/10.1111/TGIS.12801, 2021.695

Bollen, E., Hendrix, R., Kuijpers, B., Soliani, V., and Vaisman, A. A.: Analysing River Systems with Time Series Data Using Path Queries

in Graph Databases, ISPRS Int. J. Geo Inf., 12, 94, https://doi.org/10.3390/IJGI12030094, 2023.

Bonifati, A., Fletcher, G., Voigt, H., and Yakovets, N.: Querying graphs, Synthesis Lectures on Data Management, Morgan & Claypool

Publishers, San Rafael, CA, USA, ISBN 9783031007361, https://doi.org/10.1007/978-3-031-01864-0, 2018.

Brouwers, J., Peeters, B., Van Steertegem, M., Van Lipzig, N., Wouters, H., Beullens, J., Demuzere, M., Willems, P., De Ridder, K.,700

Maiheu, B., De Troch, R., Termonia, P., Vansteenkiste, T., Craninx, M., Maetens, W., Defloor, W., and Cauwenberghs, K.: MIRA Cli-

mate Report 2015, Tech. rep., VMM, Aalst, ISBN 9789491385469, http://www.milieurapport.be/Upload/main/0{_}ClimateReport2015/

Klimaatrapport{_}en{_}TW.pdf, 2015.

Cruz, I. F., Mendelzon, A. O., and Wood, P. T.: A Graphical Query Language Supporting Recursion, in: Proceedings of the 1987 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’87, p. 323–330, Association for Computing Machinery, New705

York, NY, USA, ISBN 0897912365, https://doi.org/10.1145/38713.38749, 1987.

Debrouvier, A., Parodi, E., Perazzo, M., Soliani, V., and Vaisman, A. A.: A model and query language for temporal graph databases, VLDB

J., 30, 825–858, 2021.

Desmet, N. and Bauwel, F. V.: Handleiding IGOR: Interpolatie van Geleidbaarheidsmetingen Over een Rivier, VITO, Boeretang 200, 2400

Mol, Belgium, https://igor.marvin.vito.be/documents/manual.pdf (in Dutch), 2023.710

Deutsch, A., Francis, N., Green, A., Hare, K., Li, B., Libkin, L., Lindaaker, T., Marsault, V., Martens, W., Michels, J., Murlak, F., Plantikow,

S., Selmer, P., van Rest, O., Voigt, H., Vrgoč, D., Wu, M., and Zemke, F.: Graph Pattern Matching in GQL and SQL/PGQ, in: Proceedings

29

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

of the 2022 International Conference on Management of Data, SIGMOD ’22, p. 2246–2258, Association for Computing Machinery, New

York, NY, USA, ISBN 9781450392495, https://doi.org/10.1145/3514221.3526057, 2022.

Devienne, P. and Lebegue, P.: Weighted graphs : A tool for logic programming, in: CAAP ’86, edited by Franchi-Zannettacci, P., pp. 100–111,715

Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-540-39783-0, 1986.

Francis, N., Gheerbrant, A., Guagliardo, P., Libkin, L., Marsault, V., Martens, W., Murlak, F., Peterfreund, L., Rogova, A., and Vrgoč, D.:

GPC: A Pattern Calculus for Property Graphs, https://doi.org/10.48550/ARXIV.2210.16580, 2022.

George, B. and Shekhar, S.: Time Aggregated Graphs, in: Encyclopedia of Database Systems, Second Edition, edited by Liu, L. and Özsu,

M. T., Springer, https://doi.org/10.1007/978-1-4614-8265-9_5053, 2018.720

Gilbert, T., Barr, S. L., James, P., Morley, J. G., and Ji, Q.: Software Systems Approach to Multi-Scale GIS-BIM Utility Infrastructure

Network Integration and Resource Flow Simulation, ISPRS Int. J. Geo Inf., 7, 310, https://doi.org/10.3390/IJGI7080310, 2018.

Gobin, A.: Impact of heat and drought stress on arable crop production in Belgium, Natural Hazards and Earth System Science, 12, 1911–

1922, https://doi.org/10.5194/nhess-12-1911-2012, 2012.

Hornsby, K. S. and King, K.: Modeling Motion Relations for Moving Objects on Road Networks, GeoInformatica, 12, 477–495,725

https://doi.org/10.1007/S10707-007-0039-7, 2008.

Kuijpers, B., Soliani, V., and Vaisman, A. A.: Modeling and Querying Sensor Networks Using Temporal Graph Databases, in: New Trends

in Database and Information Systems - ADBIS 2022, Turin, Italy, September 5-8, 2022, Proceedings, edited by Chiusano, S., Cerquitelli,

T., Wrembel, R., Nørvåg, K., Catania, B., Vargas-Solar, G., and Zumpano, E., vol. 1652 of Communications in Computer and Information

Science, pp. 222–231, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-031-15743-1_21, 2022.730

Libkin, L. and Vrgoč, D.: Regular Path Queries on Graphs with Data, in: Proceedings of the 15th International Conference

on Database Theory, ICDT, p. 74–85, Association for Computing Machinery, New York, NY, USA, ISBN 9781450307918,

https://doi.org/10.1145/2274576.2274585, 2012.

Llusà Serra, A., Vila-Marta, S., and Escobet Canal, T.: Formalism for a multiresolution time series database model, Information Systems, 56,

19–35, https://doi.org/https://doi.org/10.1016/j.is.2015.08.006, 2016.735

McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., Lucieer, A., Houborg, R., Verhoest, N. E. C.,

Franz, T. E., Shi, J., Gao, H., and Wood, E. F.: The future of Earth observation in hydrology, Hydrology and Earth System Sciences, 21,

3879–3914, https://doi.org/10.5194/hess-21-3879-2017, 2017.

Nittel, S.: Geosensor Networks, pp. 705–708, Springer International Publishing, Cham, ISBN 978-3-319-17885-1,

https://doi.org/10.1007/978-3-319-17885-1_497, 2017.740

Nolé, M. and Sartiani, C.: Regular Path Queries on Massive Graphs, in: Proceedings of the 28th International Conference on Scientific

and Statistical Database Management, SSDBM ’16, pp. 1–10, Association for Computing Machinery, New York, NY, USA, ISBN

9781450342155, https://doi.org/10.1145/2949689.2949711, 2016.

Pagán, B., Desmet, N., Seuntjens, P., Bollen, E., and Kuijpers, B.: Data Driven Methods for real time flood, drought and water quality

monitoring: Applications for internet of water, European Geosciences Union, https://doi.org/10.5194/egusphere-egu2020-9291, 2020.745

Rodríguez-Alarcón, R. and Lozano, S.: Complex network modeling of a river basin: an application to the Guadalquivir River in Southern

Spain, Journal of Hydroinformatics, 24, 559–573, https://doi.org/10.2166/hydro.2022.148, 2022.

Rost, C., Gómez, K., Täschner, M., Fritzsche, P., Schons, L., Christ, L., Adameit, T., Junghanns, M., and Rahm, E.: Distributed temporal

graph analytics with GRADOOP, VLDB J., 31, 375–401, https://doi.org/10.1007/S00778-021-00667-4, 2022.

30

https://doi.org/10.5194/gi-2024-3
Preprint. Discussion started: 28 June 2024
c© Author(s) 2024. CC BY 4.0 License.

